## Proof of the Arrow Impossibility Theorem

## Notation and Definitions

We denote the set of social alternatives by $S$ and assume that it contains at least 3 elements. We denote the finite set of individuals by $N$ and assume that $\# N=n \geq 2$. Each individual $i \in N$ will be assumed to have a binary weak preference relation $R_{i}$ over $S$. The asymmetric parts of binary relations $R_{i}, R_{i}^{\prime}, R, R^{\prime}$ etc., will be denoted by $P_{i}, P_{i}^{\prime}, P, P^{\prime}$ etc., respectively; and the symmetric parts by $I_{i}, I_{i}^{\prime}, I, I^{\prime}$ etc., respectively.

We define a binary relation $R$ over a set $S$ to be (i) reflexive iff $(\forall x \in S)(x R x)$, (ii) connected iff $(\forall x, y \in S)[x \neq y \rightarrow x R y \vee y R x]$, (iii) transitive iff $(\forall x, y, z \in S)[x R y \wedge y R z \rightarrow x R z]$, (iv) an ordering iff $R$ is reflexive, connected and transitive. We denote by $T$ the set of all orderings over $S$.

A social welfare function (SWF) $f$ is a function from $D \subseteq T^{n}$ to $T ; f: D \mapsto T$. SWF $f$ satisfies the condition of unrestricted domain ( U ) iff $D=T^{n}$. In other words, SWF $f$ satisfies Condition U iff the domain of $f$ consists of all logically possible n -tuples $\left(R_{1}, \ldots, R_{n}\right)$ of orderings. The social orderings corresponding to $\left(R_{1}, \ldots, R_{n}\right),\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$ etc., will be denoted by $R, R^{\prime}$ etc., respectively.

An SWF satisfies (i) the weak Pareto-criterion (P) iff $\left(\forall\left(R_{1}, \ldots, R_{n}\right) \in D\right)(\forall x, y \in S)[(\forall i \in$ $\left.N)\left(x P_{i} y\right) \rightarrow x P y\right]$, (ii) binariness or independence of irrelevant alternatives (I) iff $\left(\forall\left(R_{1}, \ldots, R_{n}\right)\right.$, $\left.\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right) \in D\right)(\forall x, y \in S)\left[(\forall i \in N)\left[\left(x R_{i} y \leftrightarrow x R_{i}^{\prime} y\right) \wedge\left(y R_{i} x \leftrightarrow y R_{i}^{\prime} x\right)\right] \rightarrow\left[\left(x R y \leftrightarrow x R^{\prime} y\right) \wedge\right.\right.$ $\left.\left.\left(y R x \leftrightarrow y R^{\prime} x\right)\right]\right] . j \in N$ is called a dictator iff $\left(\forall\left(R_{1}, \ldots, R_{n}\right) \in D\right)(\forall x, y \in S)\left[x P_{j} y \rightarrow x P y\right]$. An SWF is called dictatorial iff $(\exists j \in N)\left(\forall\left(R_{1}, \ldots, R_{n}\right) \in D\right)(\forall x, y \in S)\left[x P_{j} y \rightarrow x P y\right]$. An SWF satisfies the condition of non-dictatorship (D) iff it is not dictatorial.

Let $V \subseteq N$. Let $x, y \in S, x \neq y$. We define the set of individuals $V$ to be (i) almost decisive for $(x, y)[D(x, y)]$ iff $\left(\forall\left(R_{1}, \ldots, R_{n}\right) \in D\right)\left[(\forall i \in V)\left(x P_{i} y\right) \wedge(\forall i \in N-V)\left(y P_{i} x\right) \rightarrow x P y\right]$, (ii) decisive for $(x, y)[\bar{D}(x, y)]$ iff $\left(\forall\left(R_{1}, \ldots, R_{n}\right) \in D\right)[(\forall i \in V)(x P i y) \rightarrow x P y]$, (iii) decisive iff it is decisive for every $(a, b) \in S \times S, a \neq b$.
$V \subseteq N$ is defined to be a minimal decisive set iff it is a decisive set and no proper subset of it is a decisive set.

Lemma : Let the social welfare function $f: T^{n} \mapsto T$ satisfy independence of irrelevant alternatives and the weak Pareto criterion. Then, whenever a group of individuals $V \subseteq N$ is almost decisive for some ordered pair of distinct alternatives, it is decisive for every ordered pair of distinct alternatives.

Proof : Let V be almost decisive for $(x, y), x \neq y, x, y \in S$. Let $z$ be an alternative distinct from $x$ and $y$, and consider the following configuration of individual preferences:
$(\forall i \in V)\left[x P_{i} y \wedge y P_{i} z\right]$
$(\forall i \in N-V)\left[y P_{i} x \wedge y P_{i} z\right]$.
In view of the almost decisiveness of $V$ for $(x, y)$ and the fact that $\left[(\forall i \in V)\left(x P_{i} y\right) \wedge(\forall i \in\right.$ $N-V)\left(y P_{i} x\right)$ ], we obtain $x P y$. From $(\forall i \in N)\left(y P_{i} z\right)$ we conclude $y P z$, by condition P. From
$x P y$ and $y P z$ we conclude $x P z$, by transitivity of $R$. As $(\forall i \in V)\left(x P_{i} z\right)$, and the preferences of individuals in $N-V$ have not been specified over $\{x, z\}$, it follows, in view of condition I , that $V$ is decisive for $(x, z)$. Similarly, by considering the configuration
$(\forall i \in V)\left(z P_{i} x \wedge x P_{i} y\right)$
$(\forall i \in N-V)\left(z P_{i} x \wedge y P_{i} x\right)$
we can show $[D(x, y) \rightarrow \bar{D}(z, y)]$. By appropriate interchanges of alternatives it follows that $D(x, y) \rightarrow \bar{D}(a, b)$, for all $(a, b) \in\{x, y, z\} \times\{x, y, z\}$, where $a \neq b$. To prove the assertion for any $(a, b) \in S \times S, a \neq b$, first we note that if $[(a=x \vee a=y) \vee(b=x \vee b=y)]$, the desired conclusion $\bar{D}(a, b)$ can be obtained by considering a triple which includes all of $x, y, a$ and $b$. If both $a$ and $b$ are different from $x$ and $y$, then one first considers the triple $\{x, y, a\}$ and deduces $\bar{D}(x, a)$ and hence $D(x, a)$, and then considers the triple $\{x, a, b\}$ and obtains $\bar{D}(a, b)$.

Theorem: There does not exist any SWF satisfying conditions U, P, I and D.

Proof: By Condition $\mathrm{P}, N$ is a decisive set. Let $V \subseteq N$ be a minimal decisive set. By condition $\mathrm{P}, V$ is nonempty. By Condition $\mathrm{D}, \# V \geq 2$. Let $\left(V_{1}, V_{2}\right)$ be a partition of $V$ [i.e., $\left.V_{1} \neq \emptyset, V_{2} \neq \emptyset, V_{1} \cap V_{2}=\emptyset, V_{1} \cup V_{2}=V\right]$. Consider the following configuration of individual preferences:
$\left(\forall i \in V_{1}\right)\left[x P_{i} y P_{i} z\right]$
$\left(\forall i \in V_{2}\right)\left[y P_{i} z P_{i} x\right]$
$(\forall i \in N-V)\left[z P_{i} x P_{i} y\right]$.
From $(\forall i \in V)\left(y P_{i} z\right)$, we obtain $y P z$.
$y P x \vee x R y$, as $R$ is connected
$y P x \rightarrow V_{2}$ is almost decisive for $(y, x)$
$\rightarrow V_{2}$ is a decisive set
This contradicts the minimality of $V$.
$x R y \rightarrow x P z$, by transitivity of $R$ in view of $y P z$
$\rightarrow V_{1}$ is almost decisive for $(x, z)$
$\rightarrow V_{1}$ is a decisive set
This contradicts the minimality of $V$.
The theorem is established as both $y P x$ and $x R y$ lead to contradiction.

