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The Method of Majority Decision and Rationality Conditions

Satish K. Jain

An important problem in the context of social decision rules which do not possess the

property of yielding a rational (transitive, quasi-transitive or acyclic) social binary weak

preference relation for every profile of individual weak preference relations is that of char-

acterizing sets of binary relations defined over the set of alternatives which are such that

if in a profile every individual’s weak preference relation belongs to one of these sets then

the social weak preference relation generated by the social decision rule is invariably ra-

tional. In other words, if B is a set of binary relations defined over the set of alternatives

then the question is that of formulating conditions which would characterize nonempty

subsets D of B which are such that if every individual’s binary weak preference relation

in a profile belongs to D then the social binary weak preference relation generated by the

profile satisfies a particular rationality condition. In the social choice literature pertaining

to domain restrictions, a condition which completely characterizes all nonempty subsets

D with the property that whenever every individual’s binary weak preference relation

belongs to D the social binary weak preference relation generated by the social decision

rule satisfies a particular rationality condition is called an Inada-type necessary and suf-

ficient condition for that rationality condition. In general, for any social decision rule,

the characterizing conditions for a particular rationality condition depend on the number

of alternatives, the number of individuals and the set B whose nonempty subsets are the

objects of study. In the context of any social decision rule, the most important of these

problems is obviously that of formulating Inada-type necessary and sufficient conditions

when B is the set of all logically possible orderings of the set of alternatives.

In the context of formulating characterizing conditions for social rationality, the method

of majority decision has been extensively studied.1 For the case when B consists of all

logically possible orderings of the set of alternatives, contributions by Black [1948, 1958],

Arrow [1963], Inada [1964, 1969], Sen [1966, 1970], Sen and Pattanaik [1969], Pattanaik

[1971] and Kelly [1974] have resulted in the establishment of the following propositions: (i)

A sufficient condition for transitivity under the method of majority decision (MMD) is that

the condition of extremal restriction (ER) holds over every triple of alternatives. If the

number of alternatives is at least three and the number of individuals is even and greater

than one then the satisfaction of ER over every triple is also an Inada-type necessary

condition for transitivity under the MMD. (ii) A sufficient condition for quasi-transitivity

under the MMD is that at least one of the three conditions of limited agreement (LA),

1For an excellent survey of the literature on domain conditions see Gaertner (2001).
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value-restriction (VR) and extremal restriction holds over every triple of alternatives. If

the number of social alternatives is at least three and the number of individuals is at least

five, then the satisfaction of ER, VR or LA over every triple is also an Inada-type neces-

sary condition for quasi-transitivity under the MMD. In this paper, Inada-type necessary

and sufficient conditions are derived for the cases not covered by propositions (i) and

(ii). Given that the number of alternatives is at least three, these cases are: Inada-type

necessary and sufficient condition for transitivity when the number of individuals is odd

and greater than one, for quasi-transitivity when the number of individuals is four, and

for quasi-transitivity when the number of individuals is three.

If Inada-type necessary and sufficient conditions are formulated in terms of disjunction of

more than one condition then for proving the necessity part one first has to find all differ-

ent ways in which all the conditions figuring in the disjunction could be violated together.

This necessarily makes the proof of the necessity part of a characterization theorem both

long and tedious. For this reason in this paper all Inada-type characterization theorems

are formulated in terms of a single condition.

By combining propositions (i) and (ii) with the results of this paper, the conditions for

quasi-transitivity and transitivity under the MMD, when the number of alternatives is at

least three, can be stated as follows: (a) If the number of individuals is even and greater

than one then an Inada-type necessary and sufficient condition for transitivity under the

MMD is that the condition of extremal restriction holds over every triple of alternatives.

(b) If the number of individuals is odd and greater than one then an Inada-type necessary

and sufficient condition for transitivity under the MMD is that the condition of weak

Latin Square partial agreement (WLSPA) holds over every triple of alternatives. (c) If

the number of individuals is at least 5 then an Inada-type necessary and sufficient condi-

tion for quasi-transitivity under the MMD is that the condition of Latin Square partial

agreement (LSPA) holds over every triple of alternatives. (d) If the number of individuals

is four, then an Inada-type necessary and sufficient condition for quasi-transitivity under

the MMD is that the condition of weak extremal restriction (WER) holds over every triple

of alternatives. (e) If the number of individuals is three, then an Inada-type necessary and

sufficient condition for quasi-transitivity under the MMD is that the condition of Latin

Square linear ordering restriction (LSLOR) holds over every triple of alternatives. The log-

ical relationships among the five conditions which figure in propositions (a)-(e) are given

by: ER implies WLSPA; WLSPA implies LSPA, LSPA itself being logically equivalent to

the disjunction of VR, ER and LA; LSPA implies WER; and WER implies LSLOR. It is

possible to reformulate extremal restriction in a way that makes it possible to interpret it

as a ‘partial agreement’ condition and the other four conditions as its weakened versions.
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In the reformulated version of ER what is required is that if a set of orderings of a triple

contains a linear ordering of the triple then in any ordering belonging to the set which is

of the same Latin Square as the one associated with the linear ordering, the alternative

which is the best in the linear ordering must be considered to be at least as good as the

alternative which is the worst in the linear ordering. WLSPA requires fulfilment of ER if

a weak Latin Square involving a linear ordering exists. LSPA requires fulfilment of ER in

case a Latin Square involving a linear ordering exists. WER requires that in case there is a

linear ordering of the triple in question, then it must not be the case that there is an order-

ing of the triple in which the worst alternative of the linear ordering is uniquely best, there

is an ordering of the triple in which the best alternative of the linear ordering is uniquely

worst, and both these orderings belong to the same Latin Square which is associated with

the linear ordering. LSLOR merely requires that there be no Latin Square involving more

than one linear ordering. The formulation of extremal restriction as a ‘partial agreement’

condition and of the other four conditions as weakened versions of extremal restriction

makes it possible to prove Inada-type necessary and sufficient conditions for transitivity

and quasi-transitivity for various cases essentially on the basis of a couple of elementary

observations elaborated in lemmas 1-4 of the paper, resulting in both considerable simpli-

fication of proofs and a unified framework. The simplification which is attained because

of the ‘Latin Square approach’ adopted in this paper is even greater in the case when one

deals with reflexive, connected and quasi-transitive binary relations rather than orderings.

For the case when B consists of all logically possible reflexive, connected and quasi-

transitive binary relations over the set of alternatives, contributions by Inada (1970),

Fishburn (1970) and Pattanaik (1970) have established that a sufficient condition for

quasi-transitivity under the MMD is that at least one of the four conditions of dichotomous

preferences (DP), antagonistic preferences (AP), generalized limited agreement (GLA)

and generalized value-restriction (GVR) holds over every triple of alternatives. If the

number of social alternatives is at least three and the number of individuals is at least

five, then the satisfaction of DP, AP, GLA or GVR over every triple is also an Inada-

type necessary condition for quasi-transitivity under the MMD. For the remaining cases

Inada-type necessary and sufficient conditions are derived in this paper. When the num-

ber of alternatives is at least three, the Inada-type necessary and sufficient conditions for

quasi-transitivity for the cases of at least 5 individuals, for 4 individuals, for 3 individ-

uals and for 2 individuals are respectively: satisfaction over every triple of Latin Square

partial agreement - Q (LSPA-Q)2, of weak extremal restriction - Q (WER-Q), of Latin

2As both LSPA-Q and (DP ∨ AP ∨ GLA ∨ GVR) are Inada-type necessary and sufficient

conditions when the number of individuals is at least 5, it follows that they are logically equivalent. In

Jain (1986) it is inferred that strict Latin Square Partial agreement (SLSPA) is logically equivalent to

(DP ∨ AP ∨ GLA ∨ GVR). Thus, LSPA-Q is logically equivalent to SLSPA. The formulation in terms
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Square linear ordering restriction - Q (LSLOR-Q), and of Latin Square intransitive rela-

tion restriction - Q (LSIRR-Q). It turns out that the absence of Latin Squares involving

intransitive relations is crucial for quasi-transitivity. Indeed, conditions LSPA-Q, WER-Q

and LSLOR-Q are merely conjunctions of the requirement that there be no Latin Square

involving an intransitive relation with LSPA, WER and LSLOR respectively. Thus the

requirements for quasi-transitivity are the same when individual binary weak preference

relations are quasi-transitive as when they are transitive except for the added requirement

that there be no Latin Square involving an intransitive relation. Needless to say, this way

of formulating conditions results in considerable simplification of proofs as well as clearer

understanding of domain conditions by making the conditions for the case when individ-

ual weak preference relations are quasi-transitive directly comparable to the case when

individual weak preference relations are transitive. LSIRR-Q, the weakest of the four

conditions merely requires that there be no Latin Square consisting of two intransitive

relations or one intransitive relation and one linear ordering.

The paper is divided into five sections. The first section introduces the Latin Square

framework within which the Inada-type necessary and sufficient conditions are formu-

lated. The second section deals with the Inada-type necessary and sufficient conditions

for transitivity and the third section with conditions for quasi-transitivity, when individual

binary weak preference relations are orderings. The fourth section contains characteriza-

tion theorems for quasi-transitivity when individual binary weak preference relations are

reflexive, connected and quasi-transitive. The concluding section is concerned with the

question of formulating conditions for acyclicity defined only over triples. The main theo-

rem of this section essentially demonstrates that for any non-trivial set of binary relations

B containing intransitive binary relations no condition defined only over triples can be an

Inada-type necessary and sufficient condition for acyclicity.

1 Notation and Definitions

The set of social alternatives and the finite set of individuals constituting the society are

denoted by S and L respectively. We assume #S = m ≥ 3 and #L = n ≥ 2. Each

individual i ∈ L is assumed to have a binary weak preference relation Ri on S. We denote

asymmetric parts of binary relations R,Ri, Rj, R
s etc. by P, Pi, Pj, P

s etc. respectively;

and symmetric parts by I, Ii, Ij, I
s etc. respectively.

of LSPA-Q, rather than SLSPA, has the advantage of making the condition for the case when individual

weak preference relations are quasi-transitive directly comparable with the condition for the case when

individual weak preference relations are transitive.
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We define a binary relation R on a set S to be (i) reflexive iff (∀x ∈ S)(xRx), (ii) connected

iff (∀x, y ∈ S)(x 6= y → xRy ∨ yRx), (iii) anti-symmetric iff (∀x, y ∈ S)(xRy ∧ yRx →
x = y), (iv) transitive iff (∀x, y, z ∈ S)(xRy ∧ yRz → xRz), (v) quasi-transitive iff

(∀x, y, z ∈ S)(xPy ∧ yPz → xPz), (vi) acyclic iff (∀x1, x2, . . . , xn ∈ S)(x1Px2 ∧ x2Px3 ∧
. . . ∧ xn−1Pxn → x1Rxn), where n is a positive integer ≥ 3, (vii) an ordering iff it is re-

flexive, connected and transitive, and (viii) a linear ordering iff it is reflexive, connected,

anti-symmetric and transitive. Throughout this paper it would be assumed that for each

i, i ∈ L, Ri is reflexive and connected.

We denote by C the set of all reflexive and connected binary relations on S, by A the set

of all reflexive, connected and acyclic binary relations on S, by Q the set of all reflexive,

connected and quasi-transitive binary relations on S, and by T the set of all reflexive,

connected and transitive binary relations (orderings) on S. We denote by N() the num-

ber of individuals having the preferences specified within the parentheses. The method

of majority decision (MMD) f , a function from G ⊆ Cn to C, f : G 7→ C; is defined by:

(∀(R1, ..., Rn) ∈ G)(∀x, y ∈ S)[xRy ↔ N(xPiy) ≥ N(yPix)], where R = f(R1, . . . , Rn).

Let A ⊆ S and let R be a binary relation on S. We define restriction of R to A, denoted

by R|A, by R|A = R ∩ (A×A). Throughout this paper D would denote a nonempty set

of binary relations defined over the set of alternatives S. We define restriction of D to A,

denoted by D|A, by D|A = {R|A | R ∈ D}.

A set of three distinct alternatives will be called a triple of alternatives. Let R be a binary

relation on S and let A = {x, y, z} ⊆ S be a triple of alternatives. We define R ∈ C to be

unconcerned over A iff (∀a, b ∈ A)(aIb). R is defined to be concerned over A iff it is not

unconcerned over A. We denote by nA the number of individuals who are concerned over

the triple A. We define in A, according to R, x to be best iff (xRy ∧ xRz); to be medium

iff [(yRx ∧ xRz) ∨ (zRx ∧ xRy)]; to be worst iff (yRx ∧ zRx); and to be proper medium

iff [(yPx ∧ xRz) ∨ (yRx ∧ xPz) ∨ (zPx ∧ xRy) ∨ (zRx ∧ xPy)].

Weak Latin Square (WLS): Let A = {x, y, z} ⊆ S be a triple of alternatives and let

Rs, Rt, Ru be binary relations on S. The set {Rs|A,Rt|A,Ru|A} forms a weak Latin

Square over A iff (∃ distinct a, b, c ∈ A) [(in Rs|A a is best and b is medium and c is

worst) ∧ (in Rt|A b is best and c is medium and a is worst) ∧ (in Ru|A c is best and

a is medium and b is worst)]. The above weak Latin Square will be denoted byWLS(abca).

Remark 1 Rs|A,Rt|A,Ru|A in the definition of weak Latin Square need not be distinct.

{xIyIz} forms a weak Latin Square over the triple {x, y, z}.
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Remark 2 If Rs|A,Rt|A,Ru|A are orderings over A, then the set {Rs|A,Rt|A,Ru|A}
forms a weak Latin Square over A iff (∃ distinct a, b, c ∈ A)[aRsbRsc∧bRtcRta∧cRuaRub].

Latin Square (LS): Let A = {x, y, z} ⊆ S be a triple of alternatives and let Rs, Rt, Ru

be binary relations on S. The set {Rs|A,Rt|A,Ru|A} forms a Latin Square over A iff

(∃ distinct a, b, c ∈ A) [(in Rs|A a is best and b is proper medium and c is worst) ∧ (in

Rt|A b is best and c is proper medium and a is worst) ∧ (in Ru|A c is best and a is proper

medium and b is worst)]. The above Latin Square will be denoted by LS(abca).

Remark 3 If Rs|A,Rt|A,Ru|A are orderings over A, then the set {Rs|A,Rt|A,Ru|A}
forms a Latin Square over A iff Rs|A,Rt|A,Ru|A are concerned over A and (∃ distinct

a, b, c ∈ A)[aRsbRsc ∧ bRtcRta ∧ cRuaRub].

Remark 4 From the definitions of weak Latin Square and Latin Square, it is clear that

if Rs|A,Rt|A,Ru|A are orderings and concerned over A then they form a Latin Square iff

they form a weak Latin Square.

Let A = {x, y, z} ⊆ S be a triple of alternatives. For any distinct a, b, c ∈ A, we define:

T [WLS(abca)] = {R ∈ T |A | (aRbRc ∨ bRcRa ∨ cRaRb)}.
T [LS(abca)] = {R ∈ T |A | R is concerned over A ∧ (aRbRc ∨ bRcRa ∨ cRaRb)}.
Q[LS(abca)] = {R ∈ Q|A | (a is best and b is proper medium and c is worst in R) ∨ (b

is best and c is proper medium and a is worst in R) ∨ (c is best and a is proper medium

and b is worst in R)}.

Thus we have:

T [WLS(xyzx)] = T [WLS(yzxy)] = T [WLS(zxyz)] = {xPyPz, xPyIz, xIyPz,
yPzPx, yPzIx, yIzPx, zPxPy, zPxIy, zIxPy, xIyIz}
T [WLS(xzyx)] = T [WLS(zyxz)] = T [WLS(yxzy)] = {xPzPy, xPzIy, xIzPy,
zPyPx, zPyIx, zIyPx, yPxPz, yPxIz, yIxPz, xIyIz}
T [LS(xyzx)] = T [LS(yzxy)] = T [LS(zxyz)] = T [WLS(xyzx)]− {xIyIz}
T [LS(xzyx)] = T [LS(zyxz)] = T [LS(yxzy)] = T [WLS(xzyx)]− {xIyIz}
Q[LS(xyzx)] = Q[LS(yzxy)] = Q[LS(zxyz)] = {xPyPz, xPyIz, xIyPz, yPzPx, yPzIx,
yIzPx, zPxPy, zPxIy, zIxPy, (xPy, yIz, zIx), (yPz, zIx, xIy), (zPx, xIy, yIz)}
Q[LS(xzyx)] = Q[LS(zyxz)] = Q[LS(yxzy)] = {xPzPy, xPzIy, xIzPy, zPyPx, zPyIx,
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zIyPx, yPxPz, yPxIz, yIxPz, (yPx, xIz, zIy), (xPz, zIy, yIx), (zPy, yIx, xIz)}.

Now we define several restrictions on sets of orderings.

Extremal Restriction (ER):D ⊆ T satisfies ER over the tripleA ⊆ S iff (∀ distinct a, b, c ∈
A)[(∃R ∈ D|A)(aPbPc)→ (∀R ∈ D|A∩T [LS(abca)])(aRc)]. D satisfies ER iff it satisfies

ER over every triple contained in S.3

Thus, the satisfaction of extremal restriction by D over the triple A requires that in case

D|A contains a linear ordering of A then in every ordering in D|A which belongs to the

same Latin Square as the linear ordering, the alternative which is the best in the linear or-

dering must be at least as good as the alternative which is the worst in the linear ordering.

Weak Latin Square Partial Agreement (WLSPA): D ⊆ T satisfies WLSPA over the triple

A ⊆ S iff (∀ distinct a, b, c ∈ A)[(∃Rs, Rt, Ru ∈ D|A)(aP sbP sc ∧ bRtcRta ∧ cRuaRub) →
(∀R ∈ D|A ∩ T [LS(abca)])(aRc)]. D satisfies WLSPA iff it satisfies WLSPA over every

triple contained in S.

The satisfaction of weak Latin Square partial agreement by D over the triple A requires

that in case D|A contains a weak Latin Square involving a linear ordering of A then in

every ordering in D|A which belongs to the same Latin Square, the alternative which is

the best in the linear ordering must be at least as good as the alternative which is the

worst in the linear ordering.

Latin Square Partial Agreement (LSPA): D ⊆ T satisfies LSPA over the triple A ⊆ S iff

(∀ distinct a, b, c ∈ A)[(∃Rs, Rt, Ru ∈ D|A)(Rs, Rt, Ru are concerned over A ∧ aP sbP sc ∧
bRtcRta∧ cRuaRub)→ (∀R ∈ D|A∩ T [LS(abca)])(aRc)]. D satisfies LSPA iff it satisfies

LSPA over every triple contained in S.

The satisfaction of Latin Square partial agreement by D over the triple A requires that in

case D|A contains a Latin Square involving a linear ordering of A then in every ordering

in D|A which belongs to the same Latin Square, the alternative which is the best in the

linear ordering must be at least as good as the alternative which is the worst in the linear

ordering.

Weak Extremal Restriction (WER): D ⊆ T satisfies WER over the triple A ⊆ S iff

∼ (∃ distinct a, b, c ∈ A)(∃Rs, Rt, Ru ∈ D|A)(aP sbP sc ∧ bRtcP ta ∧ cP uaRub). D satisfies

WER iff it satisfies WER over every triple contained in S.

The satisfaction of weak extremal restriction by D over the triple A requires that D|A
3Although the definition of extremal restriction given here is quite different from the usual one, it can

easily be checked that the two definitions are equivalent to each other.
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must not contain a Latin Square which is such that one of the orderings involved in the

formation of the Latin Square is a linear ordering and in the other two orderings the

alternative which is the worst in the linear ordering is preferred to the alternative which

is the best in the linear ordering.

Latin Square Linear Ordering Restriction (LSLOR): D ⊆ T satisfies LSLOR over the

triple A ⊆ S iff ∼ (∃ distinct a, b, c ∈ A)(∃Rs, Rt, Ru ∈ D|A)(Rs, Rt, Ru are concerned

over A ∧ aP sbP sc ∧ bP tcP ta ∧ cRuaRub). D satisfies LSLOR iff it satisfies LSLOR over

every triple contained in S.

The satisfaction of Latin Square linear ordering restriction by D over the triple A requires

that D|A must not contain a Latin Square involving more than one linear ordering.

Remark 5 From the definitions of the five conditions defined above it is clear that ER

implies WSLPA; WLSPA implies LSPA; LSPA implies WER; and WER implies LSLOR.

Next, we define four restrictions on sets of reflexive, connected and quasi-transitive binary

relations.

Latin Square Partial Agreement - Q (LSPA-Q): D ⊆ Q satisfies LSPA-Q over the triple

A ⊆ S iff [[(∃Rs, Rt, Ru ∈ D|A)(Rs, Rt, Ru form a Latin Square over A)→ (Rs, Rt, Ru are

orderings over A)] ∧ [(∀ distinct a, b, c ∈ A)[(∃Rs, Rt, Ru ∈ D|A∩T |A)(Rs, Rt, Ru are con-

cerned over A ∧ aP sbP sc ∧ bRtcRta ∧ cRuaRub)→ (∀R ∈ D|A∩T [LS(abca)])(aRc)]]].

D satisfies LSPA-Q iff it satisfies LSPA-Q over every triple contained in S.

The satisfaction of Latin Square partial agreement - Q by D over the triple A requires

that there be no Latin Square contained in D|A involving an intransitive binary relation;

and that D|A ∩ T |A satisfy Latin Square partial agreement.

Weak Extremal Restriction - Q (WER-Q): D ⊆ Q satisfies WER-Q over the triple A ⊆ S

iff [[(∃Rs, Rt, Ru ∈ D|A)(Rs, Rt, Ru form a Latin Square over A)→ (Rs, Rt, Ru are order-

ings over A)] ∧ ∼ (∃ distinct a, b, c ∈ A)(∃Rs, Rt, Ru ∈ D|A∩ T |A)(aP sbP sc∧ bRtcP ta∧
cP uaRub)]. D satisfies WER-Q iff it satisfies WER-Q over every triple contained in S.

The satisfaction of weak extremal restriction - Q by D over the triple A requires that

there be no Latin Square contained in D|A involving an intransitive binary relation; and

that D|A ∩ T |A satisfy weak extremal restriction.

Latin Square Linear Ordering Restriction - Q (LSLOR-Q): D ⊆ Q satisfies LSLOR-Q

over the triple A ⊆ S iff [[(∃Rs, Rt, Ru ∈ D|A)(Rs, Rt, Ru form a Latin Square over A)

→ (Rs, Rt, Ru are orderings over A)] ∧ ∼ (∃ distinct a, b, c ∈ A)(∃Rs, Rt, Ru ∈ D|A ∩
T |A)(Rs, Rt, Ru are concerned over A ∧ aP sbP sc ∧ bP tcP ta ∧ cRuaRub)]. D satisfies
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LSLOR-Q iff it satisfies LSLOR-Q over every triple contained in S.

The satisfaction of Latin Square linear ordering restriction - Q by D over the triple A

requires that there be no Latin Square contained in D|A involving an intransitive binary

relation; and that D|A ∩ T |A satisfy Latin Square linear ordering restriction.

Latin Square Intransitive Relation Restriction - Q (LSIRR-Q): D ⊆ Q satisfies LSIRR-

Q over the triple A ⊆ S iff ∼ (∃Rs, Rt ∈ D|A)[(Rs, Rt form a Latin Square over A) ∧
(Rs is intransitive) ∧ (Rt is intransitive ∨ Rt is a linear ordering)]. D satisfies LSIRR-Q

iff it satisfies LSIRR-Q over every triple contained in S.

The satisfaction of Latin Square intransitive relation restriction - Q by D over the triple

A requires that there be no Latin Square contained in D|A consisting of two intransitive

relations or consisting of one intransitive relation and one linear ordering.

Remark 6 It is clear from the definitions of the above four conditions that LSPA-Q

implies WER-Q; WER-Q implies LSLOR-Q; and LSLOR-Q implies LSIRR-Q.

2 Conditions for Transitivity when Individual Binary

Weak Preference Relations are Transitive

This section is concerned with characterizing sets of orderings D ∈ 2T −{∅} which are such

that every logically possible (R1, . . . , Rn) ∈ Dn gives rise to transitive social binary weak

preference relation under the MMD. If the number of individuals is even and greater than

one then extremal restriction constitutes a characterizing condition (Theorem 1); and

when the number of individuals is odd and greater than or equal to 3 then weak Latin

Square partial agreement constitutes a characterizing condition (Theorem 2). Both the

results follow directly from two elementary observations about the MMD elaborated in

Lemmas 1 and 2.

Lemma 1 Let f : G 7→ C, G ⊆ Cn, be the method of majority decision. Let (R1, . . . , Rn) ∈
G and R = f(R1, . . . , Rn). Then we have:

(i) (∀ distinct x, y ∈ S)[xRy → N(xRiy) ≥ n
2
]

(ii) (∀ distinct x, y ∈ S)[xPy → N(xRiy) > n
2
].

Proof: As each Ri, i ∈ L, is connected, it follows that for any distinct x, y ∈ S we have:

N(xRiy) +N(yRix) ≥ n (1)

Now, xRy → N(xRiy) ≥ N(yRix), and (2)

xPy → N(xRiy) > N(yRix) (3)

(i) follows from (1) and (2), and (ii) follows from (1) and (3).
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Lemma 2 Let f : G 7→ C, G ⊆ T n, be the method of majority decision. Let (R1, . . . , Rn) ∈
G and R = f(R1, . . . , Rn). Let A = {x, y, z} ⊆ S be a triple of alternatives and suppose

xPy, yRz and zRx. Then we have:

(i) (∃i ∈ L)[xPiyPiz ∨ yPizPix ∨ zPixPiy]

(ii)(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A ∈ T [LS(xyzx)] ∧ xPiy ∧ yPjz ∧ zPkx].

Proof: xPy → N(xPiy) > N(yPix) (1)

yRz → N(yPiz) ≥ N(zPiy) (2)

zRx→ N(zPix) ≥ N(xPiz) (3)

(1), (2) and (3) imply respectively:

N(zPixPiy) + N(zIixPiy) + N(xPizPiy) + N(xPizIiy) + N(xPiyPiz) > N(zPiyPix) +

N(zIiyPix) +N(yPizPix) +N(yPizIix) +N(yPixPiz) (4)

N(xPiyPiz) + N(xIiyPiz) + N(yPixPiz) + N(yPixIiz) + N(yPizPix) ≥ N(xPizPiy) +

N(xIizPiy) +N(zPixPiy) +N(zPixIiy) +N(zPiyPix) (5)

N(yPizPix) + N(yIizPix) + N(zPiyPix) + N(zPiyIix) + N(zPixPiy) ≥ N(yPixPiz) +

N(yIixPiz) +N(xPiyPiz) +N(xPiyIiz) +N(xPizPiy) (6)

Adding (4), (5) and (6), we obtain:

N(xPiyPiz) +N(yPizPix) +N(zPixPiy) > N(xPizPiy) +N(zPiyPix) +N(yPixPiz) (7)

Adding (7) to (4), (5) and (6) we obtain respectively:

2N(zPixPiy)+2N(xPiyPiz)+N(zIixPiy)+N(xPiyIiz) > 2N(zPiyPix)+2N(yPixPiz)+

N(zIiyPix) +N(yPixIiz) (8)

2N(xPiyPiz)+2N(yPizPix)+N(xIiyPiz)+N(yPizIix) > 2N(xPizPiy)+2N(zPiyPix)+

N(xIizPiy) +N(zPiyIix) (9)

2N(yPizPix)+2N(zPixPiy)+N(yIizPix)+N(zPixIiy) > 2N(yPixPiz)+2N(xPizPiy)+

N(yIixPiz) +N(xPizIiy) (10)

(7)-(10) imply respectively:

N(xPiyPiz) +N(yPizPix) +N(zPixPiy) > 0 (11)

N(zPixPiy) +N(xPiyPiz) +N(zIixPiy) +N(xPiyIiz) > 0 (12)

N(xPiyPiz) +N(yPizPix) +N(xIiyPiz) +N(yPizIix) > 0 (13)

N(yPizPix) +N(zPixPiy) +N(yIizPix) +N(zPixIiy) > 0 (14)

(11)→ (∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy) (15)

(12)→ (∃i ∈ L)(Ri|A ∈ T [LS(xyzx)] ∧ xPiy) (16)

(13)→ (∃j ∈ L)(Rj|A ∈ T [LS(xyzx)] ∧ yPjz) (17)

(14)→ (∃k ∈ L)(Rk|A ∈ T [LS(xyzx)] ∧ zPkx) (18)

(15)-(18) establish the lemma.

Theorem 1 Let #S ≥ 3 and #L = n = 2k, k ≥ 1. Let D ⊆ T . Then the method of

majority decision f yields transitive social R,R = f(R1, . . . , Rn), for every (R1, . . . , Rn) ∈
Dn iff D satisfies the condition of extremal restriction.
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Proof: Suppose f does not yield transitive social R for every (R1, . . . , Rn) ∈ Dn. Then

(∃(R1, . . . , Rn) ∈ Dn)(∃x, y, z ∈ S)(xPy ∧ yRz ∧ zRx). This, by lemma 2, implies that:

(∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy), and (1)

(∃i, j, k ∈ L)[Ri|{x, y, z}, Rj|{x, y, z}, Rk|{x, y, z} ∈ T [LS(xyzx)] ∧ xPiy ∧ yPjz

∧ zPkx] (2)

(1) and (2) imply that D violates ER, which establishes the sufficiency of ER.

Let D ⊆ T violate ER. This implies that (∃x, y, z ∈ S)(∃Rs, Rt ∈ D)[xP syP sz ∧
(yRtzP tx ∨ zP txRty)]. Now consider any (R1, . . . , Rn) ∈ Dn such that #{i ∈ L | Ri =

Rs} = #{i ∈ L | Ri = Rt} = k = n
2
. The MMD then yields (xIy ∧ yPz ∧ xIz) or

(xPy ∧ yIz ∧ xIz) depending on whether Rt|{x, y, z} is yRtzP tx or zP txRty. In either

case transitivity is violated, which establishes the theorem.

Theorem 2 Let #S ≥ 3 and #L = n = 2k + 1, k ≥ 1. Let D ⊆ T . Then the

method of majority decision f yields transitive social R,R = f(R1, . . . , Rn), for every

(R1, . . . , Rn) ∈ Dn iff D satisfies the condition of weak Latin Square partial agreement.

Proof: Suppose f does not yield transitive social R for every (R1, . . . , Rn) ∈ Dn. Then

(∃(R1, . . . , Rn) ∈ Dn)(∃x, y, z ∈ S)(xPy ∧ yRz ∧ zRx). xPy, yRz and zRx imply, by

lemma 1, respectively;

N(xRiy) > n
2

(1)

N(yRiz) ≥ n
2

(2)

N(zRix) ≥ n
2

(3)

As n is odd, (2) and (3) imply respectively,

N(yRiz) > n
2

(4)

N(zRix) > n
2

(5)

(1) ∧ (4)→ (∃i ∈ L)(xRiyRiz) (6)

(4) ∧ (5)→ (∃i ∈ L)(yRizRix) (7)

(5) ∧ (1)→ (∃i ∈ L)(zRixRiy) (8)

By lemma 2 we have: (∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy), and (9)

(∃i, j, k ∈ L)[Ri|{x, y, z}, Rj|{x, y, z}, Rk|{x, y, z} ∈ T [LS(xyzx)] ∧ xPiy ∧ yPjz

∧ zPkx] (10)

(6)-(10) imply that WLSPA is violated, which establishes the sufficiency of WLSPA.

Now, letD ⊆ T violate WLSPA. This implies that (∃x, y, z ∈ S)(∃Rs, Rt, Ru ∈ D)[(xP syP sz∧
yRtzP tx∧zRuxRuy)∨(xP syP sz∧yRuzRux∧zP txRty)]. Consider any (R1, . . . , Rn) ∈ Dn

such that #{i ∈ L | Ri = Rs} = #{i ∈ L | Ri = Rt} = k = n−1
2

, and #{i ∈ L | Ri =

Ru} = 1. The MMD then yields [xRy ∧ yRz ∧ zRx ∧ ∼ (yRx ∧ xRz ∧ zRy)] violating

transitivity, which establishes the theorem.
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3 Conditions for Quasi-Transitivity when Individual

Binary Weak Preference Relations are Transitive

This section is concerned with characterizing sets of orderings D ∈ 2T −{∅} which are such

that every logically possible (R1, . . . , Rn) ∈ Dn gives rise to quasi-transitive social binary

weak preference relation under the MMD. If the number of individuals is greater than

or equal to 5 then Latin Square partial agreement constitutes a characterizing condition

(Theorem 3); if the number of individuals is 4 then weak extremal restriction constitutes

a characterizing condition (Theorem 4); and if the number of individuals is 3 then Latin

Square linear ordering restriction constitutes a characterizing condition (Theorem 5). All

the three theorems follow directly from Lemmas 2 and 4. Lemma 4 is a simple consequence

of Lemma 3 which is similar to Lemma 1.

Lemma 3 Let f : G 7→ C, G ⊆ Cn, be the method of majority decision. Let (R1, . . . , Rn) ∈
G and R = f(R1, . . . , Rn). Then we have:

(i) (∀ distinct x, y, z ∈ S)[xRy → N(Ri concerned over A = {x, y, z} ∧ xRiy) ≥ nA

2
]

(ii)(∀ distinct x, y, z ∈ S)[xPy → N(Ri concerned over A = {x, y, z} ∧ xRiy) > nA

2
].

Proof: Let A = {x, y, z} ⊆ S be a triple of alternatives.

xRy → N(xPiy) ≥ N(yPix), and (1)

xPy → N(xPiy) > N(yPix) (2)

Adding N(Ri concerned over A ∧ xIiy) to both sides of inequalities of (1) and (2) we

obtain:

xRy → N(Ri concerned over A ∧ xRiy) ≥ N(Ri concerned over A ∧ yRix), (3)

and

xPy → N(Ri concerned over A ∧ xRiy) > N(Ri concerned over A ∧ yRix) (4)

As each Ri, i ∈ L, is connected, it follows that: N(Ri concerned over A ∧ xRiy) + N(Ri

concerned over A ∧ yRix) ≥ nA (5)

(i) follows from (3) and (5); and (ii) follows from (4) and (5).

Lemma 4 Let f : G 7→ C, G ⊆ T n, be the method of majority decision. Let (R1, . . . , Rn) ∈
G and R = f(R1, . . . , Rn). Let A = {x, y, z} ⊆ S be a triple of alternatives and suppose

xPy, yPz and zRx. Then we must have: (∃i, j, k ∈ L)[Ri, Rj, Rk are concerned over

{x, y, z} ∧ xRiyRiz ∧ yRjzRjx ∧ zRkxRky].

Proof: By Lemma 3, xPy, yPz and zRx imply respectively:

N(Ri concerned over A ∧ xRiy) > nA

2
(1)

N(Ri concerned over A ∧ yRiz) > nA

2
(2)

N(Ri concerned over A ∧ zRix) ≥ nA

2
(3)
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(1) ∧ (2)→ (∃i ∈ L)(Ri concerned over A ∧ xRiyRiz) (4)

(2) ∧ (3)→ (∃j ∈ L)(Rj concerned over A ∧ yRjzRjx) (5)

(3) ∧ (1)→ (∃k ∈ L)(Rk concerned over A ∧ zRkxRky) (6)

(4)-(6) establish the lemma.

Theorem 3 Let #S ≥ 3 and #L = n ≥ 5. Let D ⊆ T . Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, . . . , Rn), for every (R1, . . . , Rn) ∈ Dn

iff D satisfies the condition of Latin Square partial agreement.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, . . . , Rn) ∈ Dn.

Then (∃(R1, . . . , Rn) ∈ Dn)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx). By Lemmas 4 and 2 we

obtain:

(∃i, j, k ∈ L)(Ri, Rj, Rk are concerned over {x, y, z} ∧ xRiyRiz ∧ yRjzRjx

∧ zRkxRky) (1)

(∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy) (2)

(∃i, j, k ∈ L)[Ri|{x, y, z}, Rj|{x, y, z}, Rk|{x, y, z} ∈ T [LS(xyzx)] ∧ xPiy ∧ yPjz ∧
zPkx] (3)

(1)-(3) imply that LSPA is violated, which establishes the sufficiency of LSPA.

Now, letD ⊆ T violate LSPA. This implies that (∃x, y, z ∈ S)(∃Rs, Rt, Ru ∈ D)[(xP syP sz∧
yRtzP tx∧zP uxRuy)∨(xP tyP tz∧yRszP sx∧zRuxP uy)∨(xP tyP tz∧yP uzRux∧zP sxRsy)].

If n = 3k, k ≥ 2, consider any (R1, . . . , Rn) ∈ Dn such that #{i ∈ L | Ri = Rs} =

k+ 1,#{i ∈ L | Ri = Rt} = k and #{i ∈ L | Ri = Ru} = k− 1; if n = 3k+ 1, k ≥ 2, con-

sider any (R1, . . . , Rn) ∈ Dn such that #{i ∈ L | Ri = Rs} = k+1,#{i ∈ L | Ri = Rt} =

k and #{i ∈ L | Ri = Ru} = k; and if n = 3k + 2, k ≥ 1, consider any (R1, . . . , Rn) ∈ Dn

such that #{i ∈ L | Ri = Rs} = k + 1,#{i ∈ L | Ri = Rt} = k + 1 and #{i ∈ L | Ri =

Ru} = k. In each case MMD yields social R violating quasi-transitivity over {x, y, z},
which establishes the theorem.

Theorem 4 Let #S ≥ 3 and #L = n = 4. Let D ⊆ T . Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, . . . , R4), for every (R1, . . . , R4) ∈ D4

iff D satisfies the condition of weak extremal restriction.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, . . . , R4) ∈ D4.

Then (∃(R1, . . . , R4) ∈ D4)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx). By Lemmas 4 and 2 we

obtain:

(∃i, j, k ∈ L)(Ri, Rj, Rk are concerned over {x, y, z} ∧ xRiyRiz ∧ yRjzRjx

∧ zRkxRky) (1)

(∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy) (2)

(1)→ (∃i, j, k ∈ L)(xPiz ∧ yPjx ∧ zPky) (3)

13



(∃j ∈ L)(yPjx) ∧ xPy → N(xPiy) ≥ 2 ∧N(xRiy) = 3 ∧N(yPix) = 1 (4)

(4)→ N(Ri concerned over {x, y, z} ∧ yRizRix) = 1 ∧N(zPiyPix) = 0

∧N(yPixPiz) = 0 (5)

(∃k ∈ L)(zPky) ∧ yPz → N(yPiz) ≥ 2 ∧N(yRiz) = 3 ∧N(zPiy) = 1 (6)

(6)→ N(Ri concerned over {x, y, z} ∧ zRixRiy) = 1 ∧N(xPizPiy) = 0 (7)

(1) ∧ (5) ∧ (7) → N(xRiyRiz) = 2 ∧ N(Ri concerned over {x, y, z} ∧ xRiyRiz) ≥
1 ∧ N(Ri concerned over {x, y, z} ∧ yRizRix) = 1 ∧ N(Ri concerned over {x, y, z} ∧
zRixRiy) = 1 (8)

zRx ∧ N(xPiz) = 1 ∧ (4) ∧ (6) ∧ (8) → (∃i, j, k ∈ L)[(xPiyPiz ∧ yPizPix ∧ zRixPiy) ∨
(xPiyPiz ∧ yPizRix ∧ zPixPiy)]

→ WER is violated. (9)

zRx ∧ N(xPiz) = 2 ∧ (4) ∧ (6) ∧ (8) → (∃i, j, k ∈ L)(xPiyPiz ∧ yRjzPjx ∧ zPkxRky) ∨
(∃i, j, k, l ∈ L)(xPiyIiz ∧ xIjyPjz ∧ yPkzPkx ∧ zPlxPly)

→ WER is violated. (10)

(9) and (10) establish that WER is violated, which proves sufficiency of WER.

SupposeD ⊆ T violates WER. This implies that (∃x, y, z ∈ S)(∃Rs, Rt, Ru ∈ D)(xP syP sz∧
yRtzP tx∧zP uxRuy). Consider any (R1, . . . , R4) ∈ D4 such that #{i ∈ L | Ri = Rs} = 2,

#{i ∈ L | Ri = Rt} = 1 and #{i ∈ L | Ri = Ru} = 1. MMD then yields

(xPy ∧ yPz ∧ zIx), which violates quasi-transitivity. This establishes the theorem.

Theorem 5 Let #S ≥ 3 and #L = n = 3. Let D ⊆ T . Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, R2, R3), for every (R1, R2, R3) ∈ D3

iff D satisfies the condition of Latin Square linear ordering restriction.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, R2, R3) ∈ D3.

Then (∃(R1, R2, R3) ∈ D3)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx). By lemma 4 we have:

(∃i, j, k ∈ L)(Ri, Rj, Rk are concerned over {x, y, z} ∧ xRiyRiz ∧ yRjzRjx

∧ zRkxRky) (1)

→ (∃i, j, k ∈ L)(xPiz ∧ yPjx ∧ zPky) (2)

xPy ∧ (∃j ∈ L)(yPjx) ∧ (1) → (∃i, j, k ∈ L)(Ri, Rj, Rk are concerned over {x, y, z} ∧
xPiyRiz ∧ yRjzRjx ∧ zRkxPky) (3)

yPz ∧ (∃k ∈ L)(zPky) ∧ (3)→ (∃i, j, k ∈ L)(xPiyPiz ∧ yPjzRjx ∧ zRkxPky) (4)

zRx∧ (∃i ∈ L)(xPiz)∧ (4)→ (∃i, j, k ∈ L)[(xPiyPiz ∧ yPjzPjx∧ zRkxPky)∨ (xPiyPiz ∧
yPjzRjx ∧ zPkxPky)] (5)

(5) implies that LSLOR is violated, which establishes sufficiency of LSLOR.

SupposeD ⊆ T violates LSLOR. This implies that (∃x, y, z ∈ S)(∃Rs, Rt, Ru ∈ D)[xP syP sz∧
yP tzP tx ∧ (zP uxRuy ∨ zRuxP uy)]. Consider any (R1, R2, R3) ∈ D3 such that #{i ∈ L |
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Ri = Rs} = #{i ∈ L | Ri = Rt} = #{i ∈ L | Ri = Ru} = 1. MMD then yields

(xRy ∧ yPz ∧ zPx) or (xPy ∧ yPz ∧ zRx) depending on whether Ru over {x, y, z} is

zP uxRuy or zRuxP uy. As quasi-transitivity is violated in either case the theorem is es-

tablished.

4 Conditions for Quasi-Transitivity when Individual

Binary Weak Preference Relations are Quasi-Transitive

In this section sets of reflexive, connected and quasi-transitive binary relations D ∈ 2Q −
{∅} which are such that every logically possible (R1, . . . , Rn) ∈ Dn gives rise to quasi-

transitive social binary weak preference relation under the MMD are characterized. If the

number of individuals is greater than or equal to 5 then Latin Square partial agreement

- Q constitutes a characterizing condition (Theorem 6); if the number of individuals is

4 then weak extremal restriction - Q constitutes a characterizing condition (Theorem

7); if the number of individuals is 3 then Latin Square linear ordering restriction - Q

constitutes a characterizing condition (Theorem 8); and if the number of individuals

is 2 then Latin Square intransitive relation restriction - Q constitutes a characterizing

condition (Theorem 9). The theorems essentially follow from Lemma 5 which is the

counterpart of conjunction of Lemmas 2 and 4 for the case when individual binary weak

preference relations are quasi-transitive.

Lemma 5 Let f : G 7→ C, G ⊆ Qn, be the method of majority decision. Let (R1, . . . , Rn) ∈
G and R = f(R1, . . . , Rn). Let A = {x, y, z} ⊆ S be a triple of alternatives and suppose

xPy, yPz and zRx. Then we have:

(i)(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A form Latin Square LS(xyzx) over A]

(ii)(∃i ∈ L)[xPiyPiz ∨ yPizPix ∨ zPixPiy ∨ (xPiy ∧ yIiz ∧ xIiz) ∨ (yPiz ∧ zIix ∧ yIix) ∨
(zPix ∧ xIiy ∧ zIiy)]

(iii)(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A ∈ Q[LS(xyzx)]∧(xPiy∨Ri|A is intransitive)∧(yPjz∨
Rj|A is intransitive) ∧ (zPkx ∨Rk|A is intransitive)].

Proof: xPy → N(xPiy) > N(yPix) (1)

yPz → N(yPiz) > N(zPiy) (2)

zRx→ N(zPix) ≥ N(xPiz) (3)

(1), (2) and (3) imply respectively:

N(zPixPiy) + N(zIixPiy) + N(xPizPiy) + N(xPizIiy) + N(xPiyPiz) + N(xPiy ∧ yIiz ∧
xIiz) > N(zPiyPix) +N(zIiyPix) +N(yPizPix) +N(yPizIix) +N(yPixPiz) +N(yPix∧
xIiz ∧ yIiz) (4)
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N(xPiyPiz) + N(xIiyPiz) + N(yPixPiz) + N(yPixIiz) + N(yPizPix) + N(yPiz ∧ zIix ∧
yIix) > N(xPizPiy) +N(xIizPiy) +N(zPixPiy) +N(zPixIiy) +N(zPiyPix) +N(zPiy ∧
yIix ∧ zIix) (5)

N(yPizPix) +N(yIizPix) +N(zPiyPix) +N(zPiyIix) +N(zPixPiy) +N(zPix ∧ xIiy ∧
zIiy) ≥ N(yPixPiz) +N(yIixPiz) +N(xPiyPiz) +N(xPiyIiz) +N(xPizPiy) +N(xPiz ∧
zIiy ∧ xIiy) (6)

By adding (4) and (5) we obtain:

2N(xPiyPiz) + N(xPiyIiz) + N(xIiyPiz) + N(xPiy ∧ yIiz ∧ xIiz) + N(yPiz ∧
zIix ∧ yIix) > 2N(zPiyPix) + N(zPiyIix) + N(zIiyPix) + N(zPiy ∧ yIix ∧ zIix) +

N(yPix ∧ xIiz ∧ yIiz) (7)

(7) → N(xPiyPiz) + N(xPiyIiz) + N(xIiyPiz) + N(xPiy ∧ yIiz ∧ xIiz) + N(yPiz ∧
zIix ∧ yIix) > 0 (8)

(8) → (∃i ∈ L)[in Ri|A x is best ∧ y is proper medium ∧ z is worst] (9)

Analogously we can show that:

(5) ∧ (6)→ (∃j ∈ L)[in Rj|A y is best ∧ z is proper medium ∧ x is worst] (10)

(6) ∧ (4)→ (∃k ∈ L)[in Rk|A z is best ∧ x is proper medium ∧ y is worst] (11)

(9), (10) and (11) imply:

(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A form Latin Square LS(xyzx) over A] (12)

Adding (4), (5) and (6), we obtain:

N(xPiyPiz)+N(yPizPix)+N(zPixPiy)+N(xPiy∧yIiz∧xIiz)+N(yPiz∧zIix∧yIix)+

N(zPix∧xIiy∧zIiy) > N(zPiyPix)+N(yPixPiz)+N(xPizPiy)+N(zPiy∧yIix∧zIix)+

N(yPix ∧ xIiz ∧ yIiz) +N(xPiz ∧ zIiy ∧ xIiy) (13)

(13)→ N(xPiyPiz)+N(yPizPix)+N(zPixPiy)+N(xPiy∧yIiz∧xIiz)+N(yPiz∧zIix∧
yIix) +N(zPix ∧ xIiy ∧ zIiy) > 0 (14)

(14)→ (∃i ∈ L)[xPiyPiz∨yPizPix∨zPixPiy∨ (xPiy∧yIiz∧xIiz)∨ (yPiz∧zIix∧yIix)∨
(zPix ∧ xIiy ∧ zIiy)] (15)

Adding (4) and (13)we obtain:

2N(zPixPiy) +N(zIixPiy) + 2N(xPiyPiz) + N(xPiyIiz) + 2N(xPiy ∧ yIiz ∧ xIiz) +

N(yPiz ∧ zIix ∧ yIix) + N(zPix ∧ xIiy ∧ zIiy) > 2N(zPiyPix) + N(zIiyPix) +

2N(yPixPiz) + N(yPixIiz) + 2N(yPix ∧ xIiz ∧ yIiz) + N(xPiz ∧ zIiy ∧ xIiy) +

N(zPiy ∧ yIix ∧ zIix) (16)

(16)→ (∃i ∈ L)[Ri|A ∈ Q[LS(xyzx)] ∧ (xPiy ∨Ri|A is intransitive)] (17)

Analogously we can show that:

(5) ∧ (13)→ (∃j ∈ L)[Rj|A ∈ Q[LS(xyzx)] ∧ (yPjz ∨Rj|A is intransitive)] (18)
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(6) ∧ (13)→ (∃k ∈ L)[Rk|A ∈ Q[LS(xyzx)] ∧ (zPkx ∨Rk|A is intransitive)] (19)

(17)-(19) imply:

(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A ∈ Q[LS(xyzx)] ∧ (xPiy ∨ Ri|A is intransitive) ∧ (yPjz ∨
Rj|A is intransitive) ∧ (zPkx ∨Rk|A is intransitive)] (20)

(12), (15) and (20) establish the lemma.

Theorem 6 Let #S ≥ 3 and #L = n ≥ 5. Let D ⊆ Q. Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, . . . , Rn), for every (R1, . . . , Rn) ∈ Dn

iff D satisfies the condition of Latin Square partial agreement - Q.

Proof: Suppose f does not yield quasi-transitive binary relation R for every (R1, . . . , Rn) ∈
Dn, D ⊆ Q. Then (∃(R1, . . . , Rn) ∈ Dn)(∃x, y, z ∈ S)(xPy∧yPz∧zRx). Denote {x, y, z}
by A. By lemma 5 we obtain:

(i)(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A form Latin Square LS(xyzx) over A]

(ii)(∃i ∈ L)[xPiyPiz ∨ yPizPix ∨ zPixPiy ∨ (xPiy ∧ yIiz ∧ xIiz) ∨ (yPiz ∧ zIix ∧ yIix) ∨
(zPix ∧ xIiy ∧ zIiy)]

(iii)(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A ∈ Q[LS(xyzx)]∧(xPiy∨Ri|A is intransitive)∧(yPjz∨
Rj|A is intransitive) ∧ (zPkx ∨Rk|A is intransitive)].

If (∃i ∈ L)[Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] then in view of (i) there is a Latin

Square involving an intransitive binary relation; which would imply violation of LSPA-Q.

(1)

If ∼ (∃i ∈ L)[Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] then (i)-(iii) imply that:

there exist Ri|A,Rj|A,Rk|A ∈ T [LS(xyzx)], of which at least one is a linear ordering

over A, which form a Latin Square; and furthermore (∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A ∈
T [LS(xyzx)] ∧ xPiy ∧ yPjz ∧ zPkx]. This implies that LSPA-Q is violated. (2)

(1) and (2) establish the sufficiency of LSPA-Q.

Suppose D ⊆ Q violates LSPA-Q. Then there is some triple A = {x, y, z} over which

LSPA-Q is violated. Violation of LSPA-Q over the triple A implies that there exists a

Latin Square over A involving an intransitive binary relation or LSPA is violated over A. If

LSPA is violated over A then by Theorem 3 there exists (R1, . . . , Rn) ∈ Dn for which R =

f(R1, . . . , Rn) violates quasi-transitivity. If there exists a Latin Square over A involving

an intransitive binary relation then we must have: (∃ distinct a, b, c ∈ {x, y, z})(∃Rs, Rt ∈
D)[[(aP sb ∧ bIsc ∧ aIsc) ∧ (bP tc ∧ cI ta ∧ bI ta)] ∨ [(aP sb ∧ bIsc ∧ aIsc) ∧ (bRtcRta ∧Rt|A
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is concerned)]]. Consider any (R1, . . . , Rn) ∈ Dn such that #{i ∈ L | Ri = Rs} =

n − 1,#{i ∈ L | Ri = Rt} = 1. Then in each case MMD yields an R which violates

quasi-transitivity.

Theorem 7 Let #S ≥ 3 and #L = n = 4. Let D ⊆ Q. Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, . . . , R4), for every (R1, . . . , R4) ∈ D4

iff D satisfies the condition of weak extremal restriction - Q.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, . . . , R4) ∈ D4, D ⊆
Q. Then (∃(R1, . . . , R4) ∈ D4)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx). By lemma 5 we obtain:

(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A form Latin Square LS(xyzx) over A] (1)

(∃i ∈ L)[xPiyPiz∨yPizPix∨zPixPiy∨ (xPiy∧yIiz∧xIiz)∨ (yPiz∧zIix∧yIix)∨ (zPix∧
xIiy ∧ zIiy)] (2)

If (∃i ∈ L) [Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] then in view of (1) there is

a Latin Square involving an intransitive binary relation; which would imply violation of

WER-Q. (3)

If ∼ (∃i ∈ L)[Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] then (1) and (2) imply that:

there exist Ri|A,Rj|A,Rk|A ∈ T [LS(xyzx)] which form a Latin Square over A, with at

least one of them being a linear ordering. (4)

(4)→ (∃i, j, k ∈ L)(xPiz ∧ yPjx ∧ zPky) (5)

(∃j ∈ L)(yPjx) ∧ xPy → N(xPiy) ≥ 2 ∧N(xRiy) = 3 ∧N(yPix) = 1 (6)

(6) → N(Ri concerned over {x, y, z} ∧ yRizRix) = 1 ∧ N(zPiyPix) = 0 ∧ N(yPixPiz) =

0 ∧N(yPix ∧ xIiz ∧ yIiz) = 0 (7)

(∃k ∈ L)(zPky) ∧ yPz → N(yPiz) ≥ 2 ∧N(yRiz) = 3 ∧N(zPiy) = 1 (8)

(8)→ N(Ri concerned over {x, y, z}∧ zRixRiy) = 1∧N(xPizPiy) = 0∧N(zPiy ∧ yIix∧
zIix) = 0 (9)

(4)∧(7)∧(9)→ N(xRiy∧yRiz∧xRiz) = 2∧N(Ri concerned over {x, y, z}∧xRiyRiz) ≥
1 ∧ N(Ri concerned over {x, y, z} ∧ yRizRix) = 1 ∧ N(Ri concerned over {x, y, z} ∧
zRixRiy) = 1 (10)

zRx ∧ N(xPiz) = 1 ∧ (6) ∧ (8) ∧ (10) → (∃i, j, k ∈ L)[(xPiyPiz ∧ yPizPix ∧ zRixPiy) ∨
(xPiyPiz ∧ yPizRix ∧ zPixPiy)]

→ WER-Q is violated. (11)

zRx ∧ N(xPiz) = 2 ∧ (∃i ∈ L)(xPiz ∧ zIiy ∧ xIiy) ∧ (6) ∧ (8) ∧ (10) → (∃i, j, k ∈
L)(xPiyPiz ∧ yPizPix ∧ zPixPiy)

→ WER-Q is violated. (12)

zRx ∧ N(xPiz) = 2 ∧ ∼ (∃i ∈ L)(xPiz ∧ zIiy ∧ xIiy) ∧ (6) ∧ (8) ∧ (10) → (∃i, j, k ∈
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L)(xPiyPiz∧yRjzPjx∧zPkxRky)∨(∃i, j, k, l ∈ L)(xPiyIiz∧xIjyPjz∧yPkzPkx∧zPlxPly)

→ WER-Q is violated. (13)

(3), (11), (12) and (13) establish the sufficiency of WER.

Suppose D ⊆ Q violates WER-Q. Then there is some triple A = {x, y, z} over which

WER-Q is violated. Violation of WER-Q over the triple A implies that there exists a

Latin Square over A involving an intransitive binary relation or WER is violated over A. If

WER is violated over A then by Theorem 4 there exists (R1, . . . , Rn) ∈ Dn for which R =

f(R1, . . . , Rn) violates quasi-transitivity. If there exists a Latin Square over A involving

an intransitive binary relation then we must have: (∃ distinct a, b, c ∈ {x, y, z})(∃Rs, Rt ∈
D)[[(aP sb ∧ bIsc ∧ aIsc) ∧ (bP tc ∧ cI ta ∧ bI ta)] ∨ [(aP sb ∧ bIsc ∧ aIsc) ∧ (bRtcRta ∧Rt|A
is concerned)]]. Consider any (R1, . . . , Rn) ∈ Dn such that #{i ∈ L | Ri = Rs} = 3 and

#{i ∈ L | Ri = Rt} = 1. Then in each case MMD yields an R which violates quasi-

transitivity.

Theorem 8 Let #S ≥ 3 and #L = n = 3. Let D ⊆ Q. Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, R2, R3), for every (R1, R2, R3) ∈ D3

iff D satisfies the condition of Latin Square linear ordering restriction - Q.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, R2, R3) ∈ D3.

Then (∃(R1, R2, R3) ∈ D3)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx). By lemma 5 we have:

(∃i, j, k ∈ L)[Ri|A,Rj|A,Rk|A form Latin Square LS(xyzx) over A] (1)

(∃i ∈ L)[xPiyPiz∨yPizPix∨zPixPiy∨ (xPiy∧yIiz∧xIiz)∨ (yPiz∧zIix∧yIix)∨ (zPix∧
xIiy ∧ zIiy)] (2)

If (∃i ∈ L) [Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] then in view of (1) there is

a Latin Square involving an intransitive binary relation; which would imply violation of

LSLOR-Q. (3)

∼ (∃i ∈ L) [Ri|A ∈ Q[LS(xyzx)] ∧ Ri|A is intransitive] ∧ (1) ∧ n = 3 → (∀i ∈
L)(Ri|A is transitive) (4)

(4) ∧ (1) ∧ (2) → (∀i ∈ L)(Ri|A is transitive) ∧ (∃i, j, k ∈ L)(Ri|A,Rj|A,Rk|A form

Latin Square LS(xyzx) over A) ∧ (∃i ∈ L)(xPiyPiz ∨ yPizPix ∨ zPixPiy) (5)

Now, by proceeding as in Theorem 5 one can show that (5) implies that LSLOR is vio-

lated; which coupled with (3) establishes the sufficiency of LSLOR-Q for quasi-transitivity.

Suppose D ⊆ Q violates LSLOR-Q. Then there is some triple A = {x, y, z} over which

LSLOR-Q is violated. Violation of LSLOR-Q over the triple A implies that there exists
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a Latin Square over A involving an intransitive binary relation or LSLOR is violated

over A. If LSLOR is violated over A then by Theorem 5 there exists (R1, R2, R3) ∈ D3

for which R = f(R1, R2, R3) violates quasi-transitivity. If there exists a Latin Square

over A involving an intransitive binary relation then we must have: (∃ distinct a, b, c ∈
{x, y, z})(∃Rs, Rt ∈ D)[[(aP sb ∧ bIsc ∧ aIsc) ∧ (bP tc ∧ cI ta ∧ bI ta)] ∨ [(aP sb ∧ bIsc ∧
aIsc) ∧ (bRtcRta ∧ Rt|A is concerned)]]. Consider any (R1, R2, R3) ∈ D3 such that

#{i ∈ L | Ri = Rs} = 2 and #{i ∈ L | Ri = Rt} = 1. Then in each case MMD

yields an R which violates quasi-transitivity.

Theorem 9 Let #S ≥ 3 and #L = n = 2. Let D ⊆ Q. Then the method of majority

decision f yields quasi-transitive social R,R = f(R1, R2), for every (R1, R2) ∈ D2 iff D

satisfies the condition of Latin Square intransitive relation restriction - Q.

Proof: Suppose f does not yield quasi-transitive social R for every (R1, R2) ∈ D2. Then

(∃(R1, R2) ∈ D2)(∃x, y, z ∈ S)(xPy ∧ yPz ∧ zRx).

xPy → N(xPiy) ≥ 1 ∧N(xRiy) = 2 (1)

yPz → N(yPiz) ≥ 1 ∧N(yRiz) = 2 (2)

(1) ∧ (2) ∧ zRx → (∃i, j ∈ L)[[xPiyPiz ∧ (zPjx ∧ xIjy ∧ zIjy)] ∨ [(xPiy ∧ yIiz ∧ xIiz) ∧
(yPjz ∧ zIjx ∧ yIjx)]]

→ LSIRR-Q is violated.

Suppose D ⊆ Q violates LSIRR-Q. Then there is some triple A = {x, y, z} over which

LSIRR-Q is violated. Violation of LSIRR-Q over the tripleA implies that: (∃ distinct a, b, c ∈
{x, y, z})(∃Rs, Rt ∈ D)[[(aP sb∧ bIsc∧aIsc)∧ (bP tc∧ cI ta∧ bI ta)]∨ [(aP sb∧ bIsc∧aIsc)∧
bP tcP ta]]. Consider any (R1, R2) ∈ D2 such that #{i ∈ L | Ri = Rs} = #{i ∈ L | Ri =

Rt} = 1. Then in each case MMD yields an R which violates quasi-transitivity.

5 Conditions for Acyclicity

Unlike transitivity and quasi-transitivity, condition of acyclicity is not defined over triples.

Consequently, there is no reason to expect existence of conditions defined only over triples

which can completely characterize all D, D ⊆ B, B ⊆ C, which are such that all logically

possible (R1, . . . , Rn) ∈ Dn give rise to acyclic social R,R = (R1, . . . , Rn), under the

MMD. In fact, if B = Q, then the subsets D ⊆ B which are such that all logically possible

(R1, . . . , Rn) ∈ Dn give rise to acyclic social R under the MMD cannot be characterized

by a condition defined only over triples as the following theorem shows.
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Theorem 10 Let f be the method of majority decision; and let #S = m ≥ 4 and #L =

n ≥ 2. Let DQ = {D ⊆ Q | (∀(R1, . . . , Rn) ∈ Dn)(R = f(R1, . . . , Rn) is acyclic)}. Then,

there does not exist any condition α defined only over triples such that D,D ∈ 2Q − {∅},
belongs to DQ iff it satisfies condition α.

Proof: Let condition α defined only over triples be such that D,D ∈ 2Q − {∅}, be-

longs to DQ iff it satisfies condition α. Let S = {x, y, z, w, t1, . . . , tm−4}. Consider D =

{(xPy, yIz, xIz; x, y, zPwPt1P . . . P tm−4), (yPz, zIx, yIx; x, y, zPwPt1P . . . P tm−4)}.
It is immediate that the MMD yields acyclic R for every (R1, . . . , Rn) ∈ Dn; and con-

sequently it follows that D ∈ DQ. As condition α is defined only over triples, it follows

that D must be satisfying α over every triple of alternatives. Therefore it follows that if

A ⊆ S is a triple and (∃ distinct a, b, c ∈ A)[D|{a, b, c} = {(aPb∧ bIc∧ aIc), (aIb∧ bPc∧
aIc)} ∨D|{a, b, c} = {aPbPc, aIbPc}] then D would satisfy α over A.

Now consider the following (R1, . . . , Rn).

(xP1y, yI1z, zP1w,wI1x, xI1z, yI1w; x, y, z, wP1t1P1 . . . P1tm−4)

(∀i ∈ L− {1})(xIiy, yPiz, zIiw,wPix, xIiz, yIiw; x, y, z, wPit1Pi . . . Pitm−4).

The R yielded by MMD for the above configuration is: (xPy, yPz, zPw,wPx, xIz, yIw;

x, y, z, wPt1P . . . P tm−4), which violates acyclicity. Now, for every triple of alternatives

A ⊆ S we have (∃ distinct a, b, c ∈ A)[{Ri|A | i ∈ L} = {(aPb, bIc, aIc), (bPc, cIa, bIa)}∨
{Ri|A | i ∈ L} = {aPbPc, aIbPc} ∨ {Ri|A | i ∈ L} = {aPbPc} ∨ {Ri|A | i ∈ L} =

{aIbPc}. Therefore, it follows that either {(aPb ∧ bIc ∧ aIc), (aIb ∧ bPc ∧ aIc)} or

{aPbPc, aIbPc} must be violating α, contradicting the earlier conclusion that both of

these sets satisfy α. This contradiction establishes the theorem.

From the above theorem the following corollary follows immediately.

Corollary 1 Let f be the method of majority decision; and let #S = m ≥ 4 and #L =

n ≥ 2. Let DA = {D ⊆ A | (∀(R1, . . . , Rn) ∈ Dn)(R = f(R1, . . . , Rn) is acyclic)}. Then,

there does not exist any condition α defined only over triples such that D,D ∈ 2A − {∅},
belongs to DA iff it satisfies condition α.

If the number of individuals is greater than or equal to 11 then the sets D ⊆ T which

are such that all logically possible (R1, . . . , Rn) ∈ Dn give rise to acyclic social R under

the MMD, however, can be characterized by a condition defined only over triples. The

following theorem can easily be proved.

Theorem 11 Let #S ≥ 3 and #L = n ≥ 11. Let D ⊆ T . Then the method of majority

decision f yields acyclic social R,R = f(R1, . . . , Rn), for every (R1, . . . , Rn) ∈ Dn iff D

satisfies the condition of Latin Square partial agreement.4

4See Sen and Pattanaik (1969) and Kelly (1974).
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As far as the remaining cases are concerned, there is no uniformity among them. In some

cases it can be shown that no condition defined only over triples can be a characterizing

condition while in some other cases it is possible to formulate a characterizing condition

defined only over the triples. For instance, it can be shown that if the number of indi-

viduals is 4 then there does not exist any condition defined only over triples which can

characterize the sets of orderings which invariably give rise to acyclic social R. On the

other hand the validity of Theorem 11 can be shown for n = 9 as well.5
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