Characterization of Non-Minority Rules

Satish K. Jain Centre for Economic Studies and Planning School of Social Sciences Jawaharlal Nehru University New Delhi 110067 India

Abstract

It is shown that a social decision rule is (a) p-non-minority rule, $\frac{1}{2} \leq p < 1$, iff it satisfies the conditions of (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) weak Paretocriterion (v) anonymity and (vi) its structure is such that a coalition is blocking iff it is strictly blocking; (b) simple non-minority rule iff it satisfies conditions (i) – (vi) and its structure is such that every proper superset of a blocking coalition is winning; (c) simple non-minority rule defined for an odd number of individuals iff it satisfies conditions (i) – (iii), (v), (vi) and its structure is such that a coalition is blocking iff it is winning.

Satish K. Jain

Selection of a social decision rule by the society for aggregating individual preferences into social preferences is logically tantamount to accepting by the society the set of value-judgements which characterize the social decision rule. Therefore for the purpose of selecting a social decision rule it is of some importance to know which social decision rules are characterized by which sets of value-judgements. For three important social decision rules namely the method of majority decision, the Pareto-extension rule and the Borda rule such characterizations have been obtained by May [1952], Sen [1970] and Young [1974] respectively. The purpose of this paper is to do a similar exercise for the class of non-minority rules. A social decision rule is defined to be p-non-minority rule, $\frac{1}{2} \leq p < 1$, iff an alternative x is declared to be socially better than another alternative y iff the number of individuals who prefer x to y is greater than p times the number of individuals constituting the society. If p is equal to $\frac{1}{2}$ then the rule is called simple non-minority rule.

We show that a social decision rule is p-non-minority rule, $\frac{1}{2} \le p < 1$, iff it satisfies the conditions of (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) weak Pareto-criterion (v) anonymity and (vi) its structure is such that a coalition is blocking iff it is strictly blocking. A social decision rule is the simple non-minority rule iff it satisfies conditions (i) - (vi) mentioned above and its structure is such that every proper superset of a blocking coalition is winning. We also show that a social decision rule is the simple non-minority rule defined for an odd number of individuals iff it satisfies conditions (i) - (iii), (v), (vi) and its structure is such that a coalition is blocking iff it is winning.

1. Notation and Definitions

The set of social alternatives is denoted by S. S is assumed to contain at least two alternatives. We denote by N the finite set of individuals. It is assumed that $\# N = n \ge 2$. We assume that every individual $i \in N$ has a binary relation R_i on S. The asymmetric parts of binary relations R_i , R'_i , R, R' etc. are denoted by P_i , P'_i , P, P' etc. respectively; and symmetric parts by I_i , I'_i , I, I' etc. respectively.

We define a binary relation R on a set S to be (i) reflexive iff $(\forall x \in S) (xRx)$, (ii) connected iff $(\forall x, y \in S) [x \neq y \rightarrow xRy \lor yRx]$, (iii) transitive iff $(\forall x, y, z \in S) [xRy \land yRz \rightarrow xRz]$, and (iv) an ordering iff it is reflexive, connected and transitive.

Throughout this paper it is assumed that for every individual $i \in N, R_i$ is an ordering.

We denote by C the set of all reflexive and connected binary relations on S and by T the set of all orderings on S. A profile of individual orderings $(R_1,...,R_n)$ specifies one and only one ordering of S for each individual $i \in N$; $(R_1,...,R_n) : N \to T$. A social decision rule (SDR) f is a function which for every profile of individual orderings $(R_1,...,R_n) \in T^n$ determines a unique reflexive and connected social R, i.e., $f: T^n \to C$. Profiles $(R_1,...,R_n)$, $(R'_1,...,R'_n)$ etc., will be written as $\langle R_i \rangle$, $\langle R'_i \rangle$ etc. respectively, in abbreviated form. The social binary relations corresponding to $\langle R_i \rangle$, $\langle R'_i \rangle$ etc. will be denoted by R, R' etc. respectively. N () will denote the number of individuals having the preferences specified in the parentheses.

An SDR satisfies the condition of independence of irrelevant alternatives (I) iff $(\forall < R_i >, < R'_i > \in T^n)$ $(\forall x, y \in S) [(\forall i \in N) [(xR_iy \Leftrightarrow xR'_iy) \land (yR_ix \Leftrightarrow yR'_ix)] \rightarrow [(xRy \Leftrightarrow xR'y) \land (yRx \Leftrightarrow yR'x)]].$ An SDR satisfying the condition I satisfies (i) neutrality (N) iff $(\forall < R_i >, < R'_i > \in T^n) (\forall x, y, z, w \in S) [(\forall i \in N) [(xR_iy \Leftrightarrow zR'w) \land (yRx \Leftrightarrow wR'_iz)] \rightarrow [(xRy \Leftrightarrow zR'w) \land (yRx \Leftrightarrow wR'_iz)],$ and (ii) monotonicity (M) iff $(\forall < R_i >, < R'_i > \in T^n) (\forall x, y \in S) [(\forall i \in N) [(xP_iy \rightarrow xP'_iy) \land (xI_iy \rightarrow xR'_iy)] \rightarrow [(xPy \rightarrow xP'y) \land (xI_iy \rightarrow xR'_iy)]]$

Let π denote the set of all permutations of positive integers 1, 2,...., n. An SDR satisfies the condition of (i) anonymity (A) iff $(\forall < \mathbf{R}_i > \in \mathbf{T}^n)$ $[(\exists \theta \in \pi) [<\mathbf{R}'_i > = <\mathbf{R}_{\theta(i)}>] \rightarrow \mathbf{R}' = \mathbf{R}]$, and (ii) weak Pareto-criterion (P) iff $(\forall < \mathbf{R}_i > \in \mathbf{T}^n)$ $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S})$ $[(\forall i \in \mathbf{N}) (\mathbf{x} \mathbf{P}_i \mathbf{y}) \rightarrow \mathbf{x}\mathbf{P}\mathbf{y}]$.

A coalition is a subset of N. A coalition V is defined to be winning iff $(\forall < \mathbf{R}_i > \in \mathbf{T}^n)$ $(\forall x, y \in \mathbf{S})$ [$(\forall i \in \mathbf{V}) (x\mathbf{P}_i y) \rightarrow x\mathbf{P} y$]. We denote by W the set of all winning coalitions. We define a coalition to be blocking iff $(\forall < \mathbf{R}_i > \in \mathbf{T}^n)$ $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S})$ $[(\forall i \in \mathbf{V}) (\mathbf{x}\mathbf{P}_i\mathbf{y}) \rightarrow \mathbf{x}\mathbf{R}\mathbf{y}]$, and to be strictly blocking iff $(\forall < \mathbf{R}_i > \in \mathbf{T}^n)$ $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S})$ $[(\forall i \in \mathbf{V}) (\mathbf{x}\mathbf{R}_i\mathbf{y}) \rightarrow \mathbf{x}\mathbf{R}\mathbf{y}]$. The set of all blocking coalitions is denoted by B, and the set of all strictly blocking coalitions by \mathbf{B}_s .

Remark 1 : Let f: $T^n \to C$. If $V_1, V_2 \in W$ then $V_1 \cap V_2$ must be nonempty, because $V_1 \cap V_2 = \emptyset$ would lead to a contradiction if we have for x, $y \in S$, $[(\forall i \in V_1) (xP_iy) \land (\forall i \in V_2) (yP_ix)]$, which would imply $(xPy \land yPx)$.

Remark 2 : From the definitions of winning coalition, blocking coalition and strictly blocking coalition, it follows that if a coalition is winning or strictly blocking then it is blocking.

We define a social decision rule $f: T^n \to C$ to be p-non-minority rule, $p \in [\frac{1}{2}, 1)$, iff $(\forall < R_i > \in T^n) (\forall x, y \in S) [xPy \Leftrightarrow N (xP_iy) > pn].$

If $p = \frac{1}{2}$, the rule is called simple non-minority rule.

Remark 3 : From the definition of p-non-minority rule it is clear that a coalition is winning iff it contains more than pn individuals.

For any real number x we denote the largest integer less than or equal to x by [x].

2. Characterization Theorems

Theorem 1: A social decision rule f is p-non-minority rule, $\frac{1}{2} \le p < 1$, iff it satisfies the conditions of (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) weak Pareto-criterion (v) anonymity and (vi) its structure is such that a coalition is blocking iff it is strictly blocking.

Proof : Let f be p-non-minority rule, $\frac{1}{2} \leq p < 1$. Then from the definition of p-non-minority rule, $\frac{1}{2} \leq p < 1$, it is clear that f satisfies conditions (i)-(v). Suppose V, $V \subseteq N$, is a blocking coalition. Then from the definitions of a blocking coalition and p-non-minority rule, $\frac{1}{2} \leq p < 1$, it follows that # (N-V) \leq pn. Therefore, for any $\langle R_i \rangle \in T^n$ and any x, $y \in S$, ($\forall i \in V$) (x R_i y) implies that N(y P_i x) \leq pn, which in turn implies \sim (yPx), i.e., xRy. This establishes that V is a strictly blocking coalition, thus proving that (vi) holds.

Next let social decision rule f satisfy conditions (i)-(vi). As f satisfies condition I we conclude that for any x, y \in S the social R over {x,y} is completely determined by individual preferences over {x,y}. By neutrality the rule for determining social R from individual preferences is the same for all ordered pairs of alternatives. Consider any x, y \in S and any profile $\langle R_i \rangle \in T^n$ such that xPy. Let N₁, N₂, N₃ designate the sets {i \in N | xP_iy}, {i \in N | xI_iy}, {i \in N | yP_ix} respectively. Now consider any profile $\langle R'_i \rangle \in T^n$ such that [($\forall i \in N_1$) (xP'_iy) \land ($\forall i \in N_2 \cup N_3$) (yP'_ix)]. Suppose yR'x. Then N₂ \cup N₃ is a blocking coalition as a consequence of conditions I, M and N. As every blocking coalition is strictly blocking we conclude that N₂ \cup N₃ is strictly blocking. But then in $\langle R'_i \rangle$ situation we must have yRx, as we have ($\forall i \in N_2 \cup N_3$) (yR_ix). As this contradicts xPy, we conclude that in $\langle R'_i \rangle$ situation yR'x is impossible, i.e., we must have xP'y. xP'y in turn implies, in view of conditions I, M and N, that N₁ is a winning coalition. Thus we have shown that ($\forall x, y \in S$) ($\forall \langle R_i \rangle \in T^n$) [xPy \rightarrow ($\exists V \in W$) ($\forall i \in V$) (xP_iy)]. If $V \in W$ then ($\forall x, y \in S$) ($\forall \langle R_i \rangle \in T^n$) [($\forall i \in V$) (xP_iy) \rightarrow xPy], by the definition of a winning coalition. Thus, ($\forall x, y \in S$) ($\forall \langle R_i \rangle \in T^n$) [xPy \Leftrightarrow ($\exists V \in$ W) ($\forall i \in V$) (xP_iy)].

Now, by the weak Pareto-criterion, N is winning and thus W is nonempty. If $V \in W$ and # V = k, then by anonymity and the definition of a winning coalition we conclude that $(\forall V' \subseteq N) [\#V' \ge k \rightarrow V' \in W]$. Next we note that $(\forall V \subseteq N) [V \in W \rightarrow \#V > \frac{n}{2}]$, otherwise, as a consequence of anonymity, there will exist two nonempty disjoint winning coalitions leading to a contradiction (see Remark 1). Let $\bar{k} = \min \{k \mid (\exists V \in W) (\# V = k)\}$. As $\bar{k} > \frac{n}{2}$, we obtain $\bar{k} = [pn] + 1$ for some $p \in [\frac{1}{2}, 1)$. Therefore, we conclude that $(\exists p \in [\frac{1}{2}, 1))$ $(\forall V \subseteq N) [V \in W \Leftrightarrow \# V > pn]$. This coupled with the earlier inference that $(\forall x, y \in S) (\forall < R_i > \in T^n)$ [xPy $\Leftrightarrow (\exists V \in W) (\forall i \in V) (xP_iy)$] implies that $(\exists p \in [\frac{1}{2}, 1)) (\forall x, y \in S) (\forall < R_i > \in T^n)$ [xPy \Leftrightarrow $N (xP_iy) > pn$]. This establishes that f is p-non-minority rule, $\frac{1}{2} \leq p < 1$.

Theorem 2 : A social decision rule f is the simple non-minority rule iff it satisfies the conditions of (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) weak Pareto-criterion (v) anonymity

and its structure is such that (vi) a coalition is blocking iff it is strictly blocking and (vii) every proper superset of a blocking coalition is winning.

Proof : Let social decision rule f be the simple non-minority rule. Then, by Theorem 1, f satisfies conditions (i) - (vi). As every coalition which has more than $\frac{n}{2}$ individuals is winning, it follows that no coalition which has less than $\frac{n}{2}$ individuals can be blocking. Thus every blocking coalition has at least $\frac{n}{2}$ individuals. Consequently every proper superset of a blocking coalition has more than $\frac{n}{2}$ individuals and is thus winning. Thus (vii) holds.

Next let social decision rule f satisfy conditions (i)-(vii). Conditions (i)-(vi) imply that f must be p-nonminority rule for some $p \in [\frac{1}{2},1)$, by Theorem 1. Conditions I, M and N imply that if a coalition is not winning then its complement must be blocking. Let $\bar{k} = \min \{k \mid (\exists V \in W) \ (\# V = k)\}$. Then, it follows that every coalition which contains at least $n - \bar{k} + 1$ individuals is blocking. As every proper superset of a blocking coalition is winning, it follows that every coalition which contains at least $n - \bar{k} + 2$ individuals must be winning. Therefore, from the definition of \bar{k} we conclude that :

$$\begin{array}{rrrr} n & -\bar{k} & +2 & \geq & \bar{k} \\ or & & \bar{k} & \leq & \frac{n}{2} +1 \end{array}$$

Also $\bar{k} > \frac{n}{2}$, otherwise by anonymity the existence of two nonempty disjoint winning coalitions would be implied leading to a contradiction. Thus we have $\frac{n}{2} < \bar{k} \leq \frac{n}{2} + 1$. This establishes that f is the simple non-minority rule.

Theorem 3 : A social decision rule f is the simple non-minority rule defined for an odd number of individuals iff f satisfies (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) anonymity and its structure is such that (v) a coalition is blocking iff it is strictly blocking and (vi) a coalition is blocking iff it is winning.

Proof : let f be the simple non-minority rule with n an odd positive integer. Then, by Theorem 2, f satisfies conditions (i)-(v). From the definition of simple non-minority rule it follows that a coalition is blocking iff its complement is not winning, and that a coalition is winning iff it has more than $\frac{n}{2}$ individuals. Consequently $(\forall V \subseteq N) [V \in B \Leftrightarrow \# V \ge \frac{n}{2}]$. As n is odd, $(\forall V \subseteq N) [\# V \ge \frac{n}{2} \Leftrightarrow \# V > \frac{n}{2}]$. Therefore, $(\forall V \subseteq N) [V \in B \Leftrightarrow V \in W]$, which establishes that (vi) holds.

Next suppose that social decision rule f satisfies (i)-(vi). Conditions I and N imply that $(\forall x, y \in S)$ $(\forall < R_i > \in T^n)$ $[(\forall i \in N) (xI_iy) \rightarrow xIy]$. By conditions I, N and M then we can conclude that $(\forall x, y \in S)$ $(\forall < R_i > \in T^n)$ $[(\forall i \in N) (xP_iy) \rightarrow xRy]$. This means that N is a blocking coalition and therefore by condition (vi) a winning coalition. Thus f satisfies the weak Pareto-criterion. As every blocking coalition is winning, f trivially satisfies the condition that every proper superset of a blocking coalition is winning. Thus f satisfies all the conditions of Theorem 2 and consequently f must be the simple non-minority rule. Now suppose n is even. Let V be a coalition such that $\# V = \frac{n}{2}$. Then, as V is not winning we conclude that N - V must be blocking. But then by condition (vi) it follows that N - V is winning. But as $\# (N - V) = \frac{n}{2}$, N - V cannot be winning. This contradiction establishes that n must be odd, completing the proof of the theorem.

References

Arrow, K. J. (1963):	Social Choice and Individual Values, IInd edition, New York : Wiley.
May, K. O. (1952):	`` A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision ", Econometrica, 20, 680-4.
Sen, A. K. (1970):	Collective Choice and Social Welfare, San Francisco : Holden-Day.
Young, H. P. (1974) :	`` An Axiomatization of Borda's Rule ", Journal of Economic Theory, 9, 43 - 52.

Characterization of Non-Minority Rules

Satish K. Jain Centre for Economic Studies and Planning School of Social Sciences Jawaharlal Nehru University New Delhi 110067 India

Abstract

It is shown that a social decision rule is (a) p-non-minority rule, $\frac{1}{2} \leq p < 1$, iff it satisfies the conditions of (i) independence of irrelevant alternatives (ii) neutrality (iii) monotonicity (iv) weak Paretocriterion (v) anonymity and (vi) its structure is such that a coalition is blocking iff it is strictly blocking; (b) simple non-minority rule iff it satisfies conditions (i) – (vi) and its structure is such that every proper superset of a blocking coalition is winning; (c) simple non-minority rule defined for an odd number of individuals iff it satisfies conditions (i) – (iii), (v), (vi) and its structure is such that a coalition is blocking iff it is winning.